Learn Linear Algebra
Theorem
The eigenvalues of a triangular matrix are the entries on its main diagonal.
Theorem
If
v
⃗
1
,
…
,
v
⃗
r
\vec{v}_1, \dots, \vec{v}_r
v
1
,
…
,
v
r
are eigenvectors that correspond to distinct eigenvalues
λ
1
,
…
,
λ
r
\lambda_1, \dots, \lambda_r
λ
1
,
…
,
λ
r
of an
n
×
n
n \times n
n
×
n
matrix
A
A
A
, then the set
{
v
⃗
1
,
…
,
v
⃗
r
}
\{ \vec{v}_1, \dots, \vec{v}_r \}
{
v
1
,
…
,
v
r
}
is linearly independent.