Learn Linear Algebra

Theorem

The determinant of an n×n n \times n matrix A A can be computed by a cofactor expansion across any row or down any column. The expansion across the i i -th row using the cofactors is: detA=ai1Ci1+ai2Ci2++ainCin \text{det} A = a_{i1}C_{i1} + a_{i2}C_{i2} + \cdots + a_{in}C_{in} The cofactor expansion down the j j -th column is: detA=a1jC1j+a2jC2j++anjCnj \text{det} A = a_{1j}C_{1j} + a_{2j}C_{2j} + \cdots + a_{nj}C_{nj}

Theorem

If A A is a triangular matrix, then detA \text{det} A is the product of the entries on the main diagonal of A A .

Theorem

Let A A be a square matrix.
  1. If a multiple of one row of A A is added to another row to produce a matrix B B , then detB=detA \text{det} B = \text{det} A .
  2. If two rows of A A are interchanged to produce B B , then detB=detA \text{det} B = -\text{det} A .
  3. If one row of A A is multiplied by k k to produce B B , then detB=kdetA \text{det} B = k \cdot \text{det} A .

Theorem

A square matrix A A is invertible if and only if detA0 \text{det} A \neq 0 .

Theorem

If A A is an n×n n \times n matrix, then detAT=detA \text{det} A^T = \text{det} A .

Multiplicative Property

If A A and B B are n×n n \times n matrices, then det(AB)=(detA)(detB) \text{det} (AB) = (\text{det} A)(\text{det} B) .