Proof (a):
Let A=[a1a2…an], B=[b1b2…bn]
A+B=[a1a2…an]+[b1b2…bn]
=[a1+b1a2+b2…an+bn]
=[b1+a1b2+a2…bn+an]
=B+A
Proof (b):
Let A=[a1a2…an], B=[b1b2…bn], and C=[c1c2…cn]
(A+B)+C=([a1+b1a2+b2…an+bn])+[c1c2…cn]
=[(a1+b1)+c1(a2+b2)+c2…(an+bn)+cn]
=[a1+(b1+c1)a2+(b2+c2)…an+(bn+cn)]
=[a1a2…an]+([b1b2…bn]+[c1c2…cn])
=A+(B+C)