Learn Linear Algebra
Cramers Rule
Let
A
A
A
be an invertible
n
×
n
n \times n
n
×
n
matrix. For any
b
⃗
∈
R
n
\vec{b} \in \mathbb{R}^n
b
∈
R
n
, the unique solution
x
⃗
\vec{x}
x
of
A
x
⃗
=
b
⃗
A\vec{x} = \vec{b}
A
x
=
b
has entries given by
x
i
=
det
A
i
(
b
⃗
)
det
A
,
i
=
1
,
2
,
…
,
n
x_i = \frac{\det A_i(\vec{b})}{\det A}, \quad i = 1, 2, \dots, n
x
i
=
det
A
det
A
i
(
b
)
,
i
=
1
,
2
,
…
,
n
An Inverse Formula
Let
A
A
A
be an invertible
n
×
n
n \times n
n
×
n
matrix. Then
A
−
1
=
1
det
A
adj
A
A^{-1} = \frac{1}{\det A} \, \text{adj} A
A
−
1
=
det
A
1
adj
A