Learn Linear Algebra

Cramers Rule

Let A A be an invertible n×n n \times n matrix. For any bRn \vec{b} \in \mathbb{R}^n , the unique solution x \vec{x} of Ax=b A\vec{x} = \vec{b} has entries given by xi=detAi(b)detA,i=1,2,,n x_i = \frac{\det A_i(\vec{b})}{\det A}, \quad i = 1, 2, \dots, n

An Inverse Formula

Let A A be an invertible n×n n \times n matrix. Then

A1=1detAadjA A^{-1} = \frac{1}{\det A} \, \text{adj} A