Learn Linear Algebra

Theorem

Let T:RnRnT: \mathbb{R}^n \mapsto \mathbb{R}^n be a linear transformation. Then TT is one-to-one if and only if the equation T(x)=0T(x)=0 has only the trivial solution.
Proof

Theorem

Let T:RnRm T: \mathbb{R}^n \to \mathbb{R}^m be a linear transformation and let A A be the standard matrix for T T . Then:

a. T T maps Rn \mathbb{R}^n onto Rm \mathbb{R}^m if and only if the columns of A A span Rm \mathbb{R}^m ;

b. T T is one-to-one if and only if the columns of A A are linearly independent.
Proof

Theorem

Let T:RnRm T: \mathbb{R}^n \to \mathbb{R}^m be a linear transformation. Then there exists a unique matrix A A such that T(x)=Ax for all xRn. T(x) = Ax \text{ for all } x \in \mathbb{R}^n. In fact, A A is the m×n m \times n matrix whose j j -th column is the vector T(ej) T(e_j) , where ej e_j is the j j -th column of the identity
matrix in Rn \mathbb{R}^n : A=[T(e1)  T(en)]. A = [T(e_1) \ \cdots \ T(e_n)].
Proof