Learn Linear Algebra

Characterization of Linearly Dependent Sets

A set of two or more vectors is linearly dependent if and only if at least one of the vectors is a linear combination of the others

Proof

Let {u1,u2,,un}\{\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n\} be a set of linearly dependent vectors, and let c1,c2,,cnRc_1, c_2, \ldots, c_n \in \mathbb{R}.

{u1,u2,,un} is linearly dependent\Leftrightarrow \{\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n\} \text{ is linearly dependent}

c1u1+c2u2++cnun=0 has non-trivial solutions\Leftrightarrow c_1\vec{u}_1 + c_2\vec{u}_2 + \ldots + c_n\vec{u}_n = \vec{0} \text{ has non-trivial solutions}

c1,c2,,cn are not all zero, where ci0\Leftrightarrow c_1, c_2, \ldots, c_n \text{ are not all zero, where } c_i \neq 0

ciui=c1u1+c2u2++ci1ui1+ci+1ui+1++cnun\Leftrightarrow -c_i\vec{u}_i = c_1\vec{u}_1 + c_2\vec{u}_2 + \ldots + c_{i-1}\vec{u}_{i-1} + c_{i+1}\vec{u}_{i+1} + \ldots + c_n\vec{u}_n

ui=c1ciu1c2ciu2cnciun\Leftrightarrow \vec{u}_i = -\frac{c_1}{c_i}\vec{u}_1 - \frac{c_2}{c_i}\vec{u}_2 - \ldots - \frac{c_n}{c_i}\vec{u}_n

ui is a linear combination of the other vectors\Leftrightarrow \vec{u}_i \text{ is a linear combination of the other vectors}

Theorem

A set of two vectors is linearly independent if and only if the vectors are not multiple of one another

Proof (by contrapositive)

Let {u,v}\{\vec{u}, \vec{v}\} be a set of linearly dependent vectors, and let c1c_1 and c2c_2 be non-zero scalars.

{u,v} is linearly dependent\Leftrightarrow \{\vec{u}, \vec{v}\} \text{ is linearly dependent}

c1u+c2v=0 has non-trivial solutions\Leftrightarrow c_1\vec{u} + c_2\vec{v} = \vec{0} \text{ has non-trivial solutions}

c1u=c2v\Leftrightarrow c_1\vec{u} = -c_2\vec{v}

u=c2c1vwhere c1,c20\Leftrightarrow \vec{u} = -\frac{c_2}{c_1}\vec{v} \quad \text{where } c_1, c_2 \neq 0

u is a scalar multiple of v\Leftrightarrow \vec{u} \text{ is a scalar multiple of } \vec{v}

Theorem

Any set containing the zero vector is linearly dependent.

Proof

Let {u1,u2,,un}\{\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n\} be a set containing the zero vector, say at ui\vec{u}_i. Let A=[u1,u2,,un]A = [\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n]. Now, there exists a column of zeros at ui\vec{u}_i. There is no pivot in this column, so a free variable exists. The equation Ax=0A\vec{x} = \vec{0} has a non-trivial solution. There exist weights c1,c2,,cnc_1, c_2, \ldots, c_n, not all zero, specifically ci0c_i \neq 0, such that: c1u1+c2u2++cnun=0 c_1\vec{u}_1 + c_2\vec{u}_2 + \ldots + c_n\vec{u}_n = \vec{0} Thus, the set {u1,u2,,un}\{\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n\} is linearly dependent.

Theorem

A set of only one vector is linearly independent if and only if the vector is not the zero vector

Proof (By contrapositive):

Let v{\vec{v}} be a set of only one vector.

\leftrightarrow {v1\vec{v_1}} is linearly dependent.

 x1v1=0\leftrightarrow \ x_1\vec{v}_1 = \vec{0} has a non-trivial solution.

 x10\leftrightarrow \ x_1 \ne 0

v1=0\leftrightarrow \vec{v_1} = \vec{0}

Theorem

The columns of a matrix AA are linearly independent if and only if the equation Ax=0A\vec{x}=\vec{0} has only the trivial solution.
Let A=[a1 a2  an]A = [\vec{a}_1 \ \vec{a}_2 \ \cdots \ \vec{a}_n] and let x=[x1x2xn]\vec{x}=\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}

The columns of AA are linearly independent.

x1a1+x2a2++xnan=0\leftrightarrow x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_n\vec{a}_n = \vec{0} has only the trivial solution.

[a1 a2  an][x1x2xn]\leftrightarrow [\vec{a}_1 \ \vec{a}_2 \ \cdots \ \vec{a}_n]\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} has only the trivial solution.

Ax=0A\vec{x}=\vec{0} has only the trivial solution.

Theorem

If a set contains more vectors than the dimension of the vecctors, then the set is linearly dependent

Proof

Let A=[v1,v2,,vn] A = [\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n] , where each vi\vec{v}_i has n n entries. Then A A is an m×n m \times n matrix. The equation Ax=0 A\vec{x} = \vec{0} corresponds to a system of m m equations and n n unknowns. If m>n m > n , then we have more unknowns than equations, and we will have a free variable in our system. By a previous theorem, Ax=0 A\vec{x} = \vec{0} has a non-trivial solution, so the set of the columns of A A is linearly dependent.